
©EDB 2024 — ALL RIGHTS RESERVED.

SLRU Performance Issues
How we have optimized it

Dilip Kumar,
Principal Engineer
30-05-2024 (2024.pgconf.dev)

1

©EDB 2024 — ALL RIGHTS RESERVED.

Agenda

● SLRU design

● SLRU design problems

● Subtransaction cache overflow problem

● Multixact contention problem

● Solutions

● Performance test

2

©EDB 2024 — ALL RIGHTS RESERVED.

SLRU design
● Stores transaction related metadata on disk with LRU caching

● Centralized ControlLock to access buffers in the cache

● For page replacement within a slot we use slot level lock

● Finding a page in cache is done sequentially

● Victim buffer search is also a sequential operation

Disk Pages

LRU Buffer cache

Control Lock

Control Lock

3

©EDB 2024 — ALL RIGHTS RESERVED.

SLRU design problems

● #1: Frequent buffer replacement in cache
○ Problem is smaller size of SLRU caches
○ This mainly occurs if wider range of transaction data are getting accessed

● #2: High contention on centralized control lock

○ When a lot of readers are accessing the SLRU along with writers.

○ This will also be caused by frequent SLRU buffer eviction

● #3: LRU counter cause frequent CPU cache misses
○ This can happen even if only readers accessing the SLRU

4

©EDB 2024 — ALL RIGHTS RESERVED.

Subtransaction cache overflow

5

©EDB 2024 — ALL RIGHTS RESERVED.

Subtransaction cache overflow

● Case1: Pgbench read-write test with scale factor 300
○ Execute the test with 128 concurrent clients

● Case2: Create a subtransaction overflow by starting a concurrent
transaction with more than 64 subtransactions

● Case3: Concurrently start a long running transaction

6

©EDB 2024 — ALL RIGHTS RESERVED.

Subtransaction cache overflow

Performance drops to half with

subtransaction overflow and after

starting a long running transaction

it hit the bottom and Shows heavy

load on SubtransSLRU and

SubtransBuffers wait events

7

©EDB 2024 — ALL RIGHTS RESERVED.

Subtransaction cache overflow

● Snapshot is a arrays of running xids and subxids bounded by xmin and xmax

● Each backend can hold 64 subxids in the cache

● If this limit crosses, snapshots can no longer get the complete information of

the subxids

● Visibility checks can only rely on xid array of the snapshot

● We need to access pg_subtrans SLRU for getting the parent xid

8

©EDB 2024 — ALL RIGHTS RESERVED.

● Only with subtransaction cache overflow, the main problem is cache line contention

due to concurrent shared lock and global LRU counter update

● With long running transaction we need to lookup wider range of xids into SLRU

because range of xmin and xmax is becoming larger

Subtransaction cache overflow

9

©EDB 2024 — ALL RIGHTS RESERVED.

Multixact Contention Issue

10

©EDB 2024 — ALL RIGHTS RESERVED.

● Case1: Modify pgbench script to generate a lot of multixact
○ Execute this script with 128 concurrent sessions

● Case2: Start a concurrent long running transaction

pg_bench script to generate multixact
BEGIN;
SELECT FROM pgbench_accounts WHERE aid = :aid FOR UPDATE;
SAVEPOINT S1;
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
END;

Multixact contention issue

11

©EDB 2024 — ALL RIGHTS RESERVED.

Multixact contention issue

Performance drop drastically with

long running transaction and

Shows heavy load on

MultiXact*SLRU and

MultiXact*Buffers wait events

12

©EDB 2024 — ALL RIGHTS RESERVED.

● For supporting row locking we need to store multiple xids on the same row

● Multixact provide a way to create a new kind of xid called multixact id

● The pg_multixact SLRU stores mapping from multixact id to member xids

● We use two SLRUs to handle the variable number of member xids

Multixact contention issue

13

MultiXactOffsetSLRU

MultiXactMemberSLRU

OFFSET1 OFFSET2 OFFSET3 OFFSET OFFSET

XID11 XID12 XID13 XID XID

XID21 XID22 XID23

©EDB 2024 — ALL RIGHTS RESERVED.

● Every access to tuple marked with multixact-id, need to fetch xids from the

SLRU

● Concurrent creation and reading of multixact create contention on ControlLock

● Long running transaction also increases the range of multixact ids to be read

● Vacuum help in cleaning up the multixact id from the tuple

Multixact contention issue

14

©EDB 2024 — ALL RIGHTS RESERVED.

 Ideas for SLRU optimizations

15

©EDB 2024 — ALL RIGHTS RESERVED.

Increase the SLRU cache size

● Pros
○ This will reduce the number of buffer eviction from cache
○ Making it configurable will help optimizing based on use case

● Cons
○ Searching buffer in SLRU is linear so doesn’t scale well with size
○ We will still have contention on a centralized control lock
○ Frequent update global LRU counter and lock variable is still there

16

©EDB 2024 — ALL RIGHTS RESERVED.

Large cache and buffer mapping hash

● Pros
○ Searching would be fast O(1)
○ We may partition the hash and add partition level lock to reduce the

contention on a centralized control lock
● Cons

○ Buffer replacement will still do linear search
○ Doesn't help with global LRU counter

17

©EDB 2024 — ALL RIGHTS RESERVED.

● Pros:
○ Do not need separate configuration of the different buffer pools
○ Maintenance of the code should be better

● Cons:
○ Hard to do some SLRU specific optimization

■ E.g. protect against evicting out the latest page
○ Might not be a best idea to compare SLRU vs Data page

Merge SLRU with main buffer pool

18

©EDB 2024 — ALL RIGHTS RESERVED.

Large cache size with partially associative cache

● Configurable SLRU cache size

● Divide cache into associative buffer banks

● Cache size is big but searching is limited to the associative buffer bank

● Buffer eviction is also fast as bank sizes are small

● No more Centralized control lock and LRU counter

19

©EDB 2024 — ALL RIGHTS RESERVED.

 Performance Results

20

©EDB 2024 — ALL RIGHTS RESERVED.

Performance: Subtransaction cache overflow

pgbench with different clients in
presence of sub-overflow and long
running transaction

● Test on 128 core machine
● Scale factor: 300
● Subtransaction_buffers:

1024

21

©EDB 2024 — ALL RIGHTS RESERVED.

Effect of patch on TPS drop at
higher clients in presence long
running transaction

● Test on 128 core machine
● Scale factor: 300
● Subtransaction_buffers:

1024

Performance: Subtransaction cache overflow

22

©EDB 2024 — ALL RIGHTS RESERVED.

Effect of patch on TPS drop at higher
clients in presence long running
transaction

● 128 concurrent clients
● Scale factor: 300
● multixact_offsets_buffers: 256
● multixact_members_buffers:

512

Performance: Multixact contention

23

©EDB 2024 — ALL RIGHTS RESERVED.

Summary
● SLRU design mainly has 3 main problems

○ Frequent buffer eviction due to small cache size
○ Contention on centralized control lock
○ LRU counter cause frequent CPU cache misses

● SLRU optimization
○ Make the cache size configurable
○ Divide SLRU cache into small associative banks
○ Implement bankwise lock to remove the centralized control lock contention
○ Remove centralize LRU counter

● Performance
○ 2-3 x performance gain when there is huge load on SLRU

24

©EDB 2024 — ALL RIGHTS RESERVED.

Thank You!

25

